Banner Photo

Suche Uni-Osnabrueck.DE
Suche WWW
Barrierefreie Version
English version Deutsche Sprachvariante         
 
Informationen für ...
Informationen über ...



© 2013 Universität Osnabrück
Impressum
Kontakt



Universität Osnabrück - Familiengerechte Hochschule

Prof. Dr. Gabriele Steidl (Universität Mannheim): Operator Splittings in Image Processing

Startdatum/-zeit: 07.07.2010 17:15
Enddatum/-zeit: 07.07.2010

Veranstalter:

Adresse: Fachbereich Mathematik/ Informatik, Institut für Mathematik
Prof. Dr. Gitta Kutyniok
Albrechtstr. 28a
49076 Osnabrück
Telefon: 0541 - 969 - 3516
Telefax: 0541 - 969 - 2770
E-Mail: kutyniok@uos.de
Homepage: http://www.mathematik.uni-osnabrueck.de/kolloquium.html

Veranstaltungsort:

Adresse: Institut für Mathematik
Institut für Mathematik, Geb. 69/ Raum 125
Albrechtstr. 28a, 49076 Osnabrück
Karte: Bei Google Maps anzeigen
Beschreibung: Operator splitting techniques were developed in the 60th for the efficient solution of linear systems of equations appearing in connection with the numerical solution of partial differential equations. More than 20 years later these methods were generalized to nonlinear, set-valued, monotone operators and were recently successfully applied in image precessing. After motivating why methods of convex analysis/non-smooth convex optimization are useful for many image restoration tasks we give a brief introduction into the relevant operator splitting techniques. We point out that for special functionals there exist equivalent derivations via averaged operatoren, (Bregman) proximal point methods or augmented Lagrangian methods. Then we present applications of operator splitting methods in direction-steered inpainting (interpolation) and for denoising of images corruped with non-additive noise (and possibly some blur) which appear for example in Synthetic Aperture Radar and electronic microscopy.
Kategorie: Mathematisches Kolloquium
Suche weitere Termine:

zurück  |  Druckvorschau
Download als iCal

Veranstaltungskalender

Juli 2010

  MO DI MI DO FR SA SO
26   1 2 3 4
27 5 6 7 8 9 10 11
28 12 13 14 15 16 17 18
29 19 20 21 22 23 24 25
30 26 27 28 29 30 31  


nur zukünftige Termine

Neue Einträge anzeigen



Kategorien